Effect of Bubble CPAP on severe pneumonia and severe respiratory distress in children and neonates: Detailed prospective observational study

Francis Pulsan

Master of Medicine II candidate Port Moresby General Hospital, University Of Papua New Guinea, Papua New Guinea

Pneumonia /ALRTI

- Commonest causes of morbidity and mortality in developing countries
- ~1.3 million children die annually.
- 11–20 million children hospitalized. (UNICEF, WHO , 2006).
- ~ 13% of children with pneumonia needing hospitalization have hypoxemia
- PNG: pneumonia accounts for 25-35% of all hospitalization and deaths

Bubble CPAP

- CPAP = continuous positive airway pressure
- Effects on lung function
 - maintenance of functional residual capacity
 - improves lung volume recruitment
 - prevents atelectasis
 - maintains energy reserves.
- CPAP with optimal humidification very helpful.
- Research on implementation and effectiveness of bCPAP
- Our study: most effective CPAP set-up, and the steps to implementation.

Aim / objectives

- To record detailed observations on the use of bubble CPAP
- To evaluate the clinical and other characteristics of children responding to CPAP
- To document the technical, clinical and training requirements in clinical pediatric care
- To educate clinicians with skills and knowledge

Methods

- Study population: 64 children
- **Study design**: detailed prospective observational study
- **Study site**: Pediatric HDU and the SCN in PMGH
- **Study duration**: March 2014 to August 2016
- Selection criteria: Children with severe pneumonia; children and neonates with severe respiratory distress. $SpO_2 < 90\%$ despite oxygen
- Exclusion criteria: congenital heart disease, severe anaemia in heart failure, or severe birth asphyxia

- Pulse oximeter and respiratory distress score monitoring
- Quality assurance checks for oxygen concentrators and circuits
- Circuits and concentrators assessment.
- Training

- Data extraction and analysis: data form, MS Excel, STATA .
- Ethical clearance: SMHS, PMGH and MRAC

Results: Baseline characteristic

Characteristic	Total n=64	
Male, n (%)	41 (64.1%)	
Age in months: median (IQR)	3 (2-7)	
Neonates (< 1month), n (%)	15 (23.4%)	
Infants 1-12 month, n (%)	39 (68.4%)	
>12 months, n (%)	7 (12.3%)	
Weight (median, IQR)	4.7 (3.3-6.1)	

Clinical observations characteristics

	Pre CPAP	1hr	24hr	48hr
Number of survivors n, (%)	64	64	48	39
Type of respiratory support requiring	CPAP			
SpO ₂ , median (IQR)	78 (53.3- 86.8)	92 (8- 97.8)	96.5 (91.5- 99)	98 (89.8- 99)
Respiratory Distress Score, median (IQR)	11 (10-12)	9 (8-11)	8 (7-9)	7 (6.75-9)

Predictors of outcome

Characteristic	Total	Survived	Died	Univariable Odds Ratio (95% CI)	p-value
Neonatal age	18	8	10	1.05 (0.35-3.2)	0.93
Sepsis	8	0	8		**
Anemia	13	7	6	0.65 (0.19-2.2)	0.49
HIV	12	1	11	12.8 (1.5-106.8)	0.018 *
Tuberculosis	5	2	3	1.3 (0.2-8.3)	0.80
Severe malnutrition	5	1	4	3.6 (0.4-34.3)	0.26
Any comorbidity	35	14	21	1.6 (0.59-4.3)	0.35
Pre-CPAP SpO ₂	64	77.4 (72.8-83.0)%	65.3 (57.9-72.7)%	(0.013 *
Pre-CPAP RDS	64	10.7 (10.2-11.2)	10.8 (10.3-11.4)		0.72
One hour SpO ₂	64	92.0 (88.5-95.3)%	83.3 (78.4-88.3)%	(0.02 *
One hour RDS	64	8.8 (8.1-9.4)	9.9 (9.2-10.5)	(0.006 *

Figure 1. Area under the ROC curve for HIV, sepsis, the pre-CPAP SpO2, and the SpO2 and respiratory distress score one hour after commencing CPAP.

• Mortality: 54.7% (n=35). Multivariate :HIV (p =0.038), SpO₂ at 1 hour (p=0.08)

Discussion

- HIV, sepsis, the pre-CPAP SpO₂, SpO₂ and respiratory distress score predicted outcome
- High mortality rate
 - Seriously ill patients and comorbidities
 - Late presentations, delaying administration of CPAP
 - Early familiarity of CPAP use.
- Decreasing mortality rate
 - Early intervention of CPAP
 - Comorbidities and seriously ill patients managed properly
 - Clinicians familiar and confident in using CPAP
- Our study showed significant improvement in oxygenation and respiratory distress

Determining best equipments

Way forward

- Introduce into selected provincial hospitals pediatric HDU
- Criteria and standardize respiratory distress score in using CPAP
- Protocol in care and using CPAP machine
- Hospital support in maintenance and ongoing procuring of equipment

Conclusion

- Bubble CPAP improves oxygenation and respiratory distress
- Risk factors for outcome:
 - HIV
 - Sepsis
 - Pre-CPAP SpO₂
 - At one hour low SpO₂ and RDS
- Majority of doctors not confident initially
- Need more nurses to be familiar with CPAP.
- Need for technical and clinical training .

Recommendation

- b CPAP with oxygen driven by oxygen concentrator, low resistance, robust circuits
- Early intervention of CPAP
- More training, familiarity and implementing CPAP.
- Protocol for training program and assessing skills and knowledge
- Financial and technical support .

References

- Christi, Mahammod J et al, 2015. Bubble continuous positive airway pressure for children with severe pneumonia and hypoxemia in Bangladesh: an open, randomized controlled trial. *The Lancet*, 19 August, Issue 15, pp. 1-9.
- Duke T, ed. 2016. Oxygen therapy for children. Geneva: WHO.
- Subhi R et al, 2009. The prevalence of hypoxemia among ill children in developing countries. *Lancet Infectious Disease*, Volume 9, p. 219–27.
- Wilson, PT et al, 2013. A Randomized Clinical Trial Evaluating Nasal Continuous Positive airway pressure for Acute Respiratory Distress in a Developing Country. *The Journal Of Pediatrics*, May, 162(5), pp. 988-992.

Acknowledgment

- Dr Kone Sobi
- Professor Trevor Duke
- Pediatricians and Training Registrars
- Dr Wendy Pameh
- Dr Paulus Ripa
- Nursing officers, CHW and biomedical technicians
- PMGH, NDOH and SMHS
- Patients and caregivers