MMed and DCH Lectures

Intensive care management of common paediatric problems II June 6, 2022

Prof Trevor Duke

Case 1: 9-month-old

- 2 days cough, fever and respiratory distress
- Episode of severe egg allergy at 7 months, wheeze and rash
- RR 80, severe chest indrawing, HR 170, SpO₂ 82%
- Prolonged expiratory phase.
 Wheeze +++ crackles +

Stages in management of any sick child

- Triage
- Emergency treatment
- History and examination
- Laboratory investigations, if required
- Main diagnosis and other diagnoses
- Treatment
- Supportive care
- Monitoring
- Discharge planning
- Follow-up

oF Hospital care for children

CUIDELINES FOR THE MANAGEMENT OF Common Childhood Illnesses

Second edition

Triage

- Take a brief history of the presenting problem
- Take temperature and weigh the child
- A. Listen for stridor or obstructed breathing
- B. Look for cyanosis and for signs of respiratory distress (chest indrawing, tracheal tug), check SpO₂
- C. Feel the skin temperature of the hands and feet, feel the pulse for volume, check capillary refill time
- D. Assess for lethargy and level of interaction.

World Health Organization

Emergency signs

- Obstructed breathing
- Severe respiratory distress
- Central cyanosis
- Signs of shock
- Coma
- Convulsions
- Severe dehydration

Hospital care for children

GUIDELINES FOR THE MANAGEMENT OF Common Childhood Illnesses

Second edition

Emergency signs

- Obstructed breathing
- Severe respiratory distress
- Central cyanosis
- Signs of shock
- Coma
- Convulsions
- Severe dehydration

POCKET BOOK OF Hospital care for children

GUIDELINES FOR THE MANAGEMENT OF Common Childhood Illnesses

Second edition

Emergency treatment

- Oxygen
- Salbutamol
- Antibiotics

Causes of lung hyperinflation

- Asthma
- Bronchiolitis
- Foreign body
- Congenital obstruction
- Distressed and tachycardic with salbutamol, severe respiratory distress despite oxygen
- Prolonged expiratory phase
- Wheeze +++ crackles +

Therapies for bronchoconstriction

- Salbultamol (Ventolin)?
- CPAP?
- Adrenaline?
- Steroids?
- Nebulised saline
- Magnesium?

Hypertonic saline in bronchiolitis (3%-6% NaCl)

Cochrane Database of Systematic Reviews

[Intervention Review]

Nebulised hypertonic saline solution for acute bronchiolitis in infants

Linjie Zhang¹, Raúl A Mendoza-Sassi¹, Claire Wainwright², Terry P Klassen³

- 28 trials, 4195 infants
- Improved clinical severity scores
- Reduced hospitalisation by 14% when used in ED
- Helps infants shift secretions which can block small airways

What about normal saline in bronchiolitis?

Nebulised normal saline in moderate acute bronchiolitis and pneumonia in a low- to middle-income country: a randomised trial in Papua New Guinea

Gordon Pukai^{a,b} and Trevor Duke^{b,c,d}

PAEDIATRICS AND INTERNATIONAL CHILD HEALTH https://doi.org/10.1080/20469047.2020.1725338

- 199 patients with bronchiolitis / moderate pneumonia <2 years, randomized to nebulized NS or standard care
 - Improved Respiratory Distress Score at 4 hours
 - Improved SpO₂
 - Higher safe discharge rate

Magnesium?

- Inhibits contraction of bronchial smooth muscle:
 - Blocks acetylcholine release from cholinergic nerve terminals (Ach mediator of bronchial smooth muscle constriction)
 - Blocks NMDA receptors (why ketamine also works in asthma)
 - Blocks calcium influx into cells
- Anti-inflammation
 - Decreases glandular mucus production
 - Decreases histamine release from mast cells
 - Reduces neutrophil activation, anti-inflammatory processes?
- Highly effective in asthma, but not proven effective in bronchiolitis
- Dose: 0.2ml/kg IV over 30 minutes

2-year-old girl

- 3 days of cough, fever, respiratory distress
- History of stridor every time she runs longstanding
- Severe respiratory distress, crackles, cyanosis
- Very prolonged expiratory phase

Differential diagnosis

- Laryngomalacia
- Asthma
- Recurrent croup
- Pneumonia
- Inhaled foreign body
- A cardiac problem?

PA sling

Instead of arising from the main pulmonary artery, the left pulmonary artery arises from the right pulmonary artery and runs posteriorly between the esophagus and trachea.

4 month old boy with failure to thrive

- 4 month old boy
- Failure to thrive, persistent diarrhoea
- Respiratory distress, fever and tachypnoea, SpO₂ 65-70%
- Temp 38.8, RR 70, HR 180
- Hb 11.8, WCC 6.1, N=5.5, L=0.6, Platelets 130
- Oxygen

What could cause air-leak?

- Anything that causes sudden increase in intra-airway pressure
 - Expiratory airflow obstruction (asthma, foreign body)
 - A bout of heavy coughing (pertussis, pneumocystis, RSV)
- A medical problem leading to airway / alveolar fragility (blebs, cysts)
 - Tuberculosis, Pneumocystis

- ✓ Severe hypoxia
 ✓ Air leak
 ✓ Lymphopenia
 ✓ Failure to thrive
- = Pneumocystis

Other causes

- RSV
- Trauma (fractured larynx, oesophageal perforation)

Air leak in asthma

Air leak in tetanus

Lymphopenia definitions in children

- Normal levels for age
 - 0-2 years 3000+
 - 2-6 years 2000+
 - 6-18 years 1500+

12 year old boy who collapsed at soccer

- 12 year old boy, previously well, weight 35kg
- While playing soccer, sudden collapse (not struck)
- CPR given by father
- Ambulance arrived defibrilated

What is the rhythm?

- VF with *Torsade de points*
- ? $\downarrow \downarrow \downarrow$ Magnesium
- ? Wolf-Parkinson-White Syndrome

Management

- SpO₂ 50-60%
- Hypertensive: BP 158 / 105 (123)
- What does the chest x-ray show?
- Treatment
 - CPAP with 100% oxygen
 - Magnesium infusion
 - Correct acidosis
 - Antibiotics for aspiration
 - Time

start oxygen flow at 5 L/min, look for bubbles in water bottle, increase up to 10 L/min if needed to generate bubbles

Oxygen therapy for children

> World Health Organization