MMed and DCH Lectures

Common kidney diseases in children August 23, 2021

Prof Trevor Duke

14-year-old girl with Staph meningitis

- Severe headache, vomiting
- Presented lethargic, poorly conscious
- Underlying problem of diabetes
- Staph aureus on blood cultures (MRSA)
- Started on ceftriaxone, then added vancomycin
- Oxygen, supportive care, close monitoring
- → Became oliguric (passed 60ml in a 24-hour period)

Oliguria

- <0.5ml/kg/hour</p>
- A 50kg child should pass 25ml per hour urine, or 600ml per day
- 60ml over a 24-hour period is severe oliguria

Creatinine (30-80 micromole/L) and urea (2-6.5)

Cause of renal failure

- Dehydration and pre-renal hypoperfusion of kidneys
- Vancomycin
- Ibuprofen for headache
- Intravenous contrast for a CT head
- Other causes less contributory:
 - Staph sepsis
 - UTI
 - Underlying diabetic kidney disease

Management

- Correct dehydration but then fluid (insensible losses only)
- Monitor acid-base and potassium
- Indications for dialysis:
 - hyperkalaemia 个个 (>5.5 mmol/L and rising, despite interventions to reduce it – sodium bicarbonate, insulin and glucose, salbutamol)
 - Severe acidosis (pH<7)
 - Severe oedema
 - Uraemia with reduced conscious state
- Careful use of frusemide

Insensible losses

- Trans-epidermal diffusion: water that passes through the skin and is lost by evaporation
- Evaporative water loss from the respiratory tract

- Maximum 800ml per day (adult)
- About 30ml/kg/day (up to 800) in child

Common kidney diseases in children

- 1. Nephrotic syndrome
- 2. Post-streptococcal glomerulonephritis
- 3. Chronic kidney disease

Nephrotic syndrome

- Heavy proteinuria, hypoalbuminaemia and oedema
- Most common is idiopathic (90%)
- SLE, Henoch-Schonlein purpura
- Key acute complications are hypovolemia, infection and thrombosis
- 80-90% steroid responsive, 80% will have one or more relapses

Oedema – differential Dx

Hypoalbuminaemia

- Inadequate intake kwashiorkor
- Increased losses
 - Kidney: nephrotic syndrome
 - GI tract protein losing enteropathy, worm infestation
- Inadequate production
 - Liver failure

Fluid overload

- Anaemia
- Congestive heart failure
- latrogenic

Lymphatic obstruction

- Tuberculosis, other
- Generalised capillary leak
 - Severe sepsis

Assessment – consider the DDx

- Sick or well
- Generalised or focal
- Ascites, pleural effusions, pericardial effusion
- Pallor, jaundice
- Other signs of PEM
- Signs of TB
- Signs of lymphatic obstruction
- Rash SLE, HSP

- Abdominal pain, vomiting, bloody diarrhoea
- Rash
- Arthralgia
- Foot and ankle oedema
- WCC normal
- Haematuria

Henoch-Schonlein purpura

- Abdominal pain, vomiting, bloody diarrhoea
- Rash
- Arthralgia
- Foot and ankle oedema
- WCC normal
- Haematuria

Nephrotic: assessment severity and complications

- Intravascular volume depletion
 - Cold hands or feet, capillary refill time >3 seconds
 - Tachycardia, low volume pulses
 - Oliguria, hypotension, narrow pulse pressure (e.g. 60/80).
- Severe oedema
 - Gross scrotal / vulval oedema
 - Skin breakdown / cellulitis
 - Pleural effusion, ascites
- Infection
 - Cellulitis
 - Spontaneous bacterial peritonitis abdominal pain, tenderness
- Thrombosis

Investigations

- Heavy proteinuria 3-4+
- Check urine for blood if large suggests *nephritic* syndrome
- Creatinine:
 - may be normal
 - mild elevation of serum creatinine if volume depletion.
 - If creatinine very high, consider *nephritic* syndrome
- LFT including albumin (<25 g/L)
- FBC: check for anaemia, neutrophilia or neutropenia (infection).

Check for proteinuria, haematuria, nitrites

Treatment

- Manage oedema
 - No added salt diet
 - Daily weights, daily urine dipstick
 - Strict fluid balance with close attention to volume status
- Do not give frusemide, as can make intravascular volume depletion worse
 - If shock, give albumin if you can +/- frusemide
- Penicillin V (phenoxymethylpenicillin) to prevent pneumococcal peritonitis until oedema subsides

Treatment

- **Prednisolone**: to induce remission, then a slow wean to reduce risk of relapse
 - 60 mg/m²/day (max 60 mg) for 4 weeks
 - then 40 mg/m²/day (max 40 mg) on alternate days for 4 weeks
 - then 20 mg/m²/day on alternate days for 10 days
 - then 10 mg/m²/day on alternate days for 10 days
 - then 5 mg/m²/day on alternate days for 10 days
 - then cease

Body surface area (m²)

Weight (kg) x height (cm)

Discharge planning – teaching the family

- Teach the family to test urine protein each morning to identify a relapse (3-4+ protein for 3 consecutive days), at which point the family should re-present
- It is better to detect relapse *before* edema develops, much more effective to reinstitute steroids (lower dose shorter course)
- Tell parents: child will likely respond to therapy, they will likely have relapses (80% chance)

Red flags – when to think again

Features suggesting diagnosis other than INS

- Severe, difficult to control oedema
- Elevated creatinine despite correction of hypovolemia
- Not in remission after 4 weeks of steroid therapy
- Relapses (while taking steroids or within two weeks of cessation)
- Steroid toxicity prompting consideration of alternative agent

Post-streptococcal glomerulonephritis (PSGN)

- Children 5-12 years
- Post throat infection (1-3 weeks) or skin infection (3-6 weeks) from Group A streptococcus
- Immune complex deposition in glomerulus, complement activation
 - Haematuria
 - Proteinuria (can reach the nephrotic range)
 - Oedema
 - Hypertension salt and water retention, sometimes encephalopathy
 - Acute kidney injury

Group A streptococcus skin and throat infections

- Deposition of streptococcal antigens within the glomerulus: Streptococcal pyrogenic exotoxin B (and others)
- Complement activation \rightarrow C3 $\downarrow \downarrow \downarrow$
- Neutrophil infiltrate ++++
- "Acute diffuse proliferative GN"

Investigations

- Urine for red cells, casts, glomerular red cells
- Creatinine \uparrow
- WCC 个
- Antibodies to Streptococcal antigens
 - Anti-streptolysin (ASO)
 - Anti-DNase B antibodies

Red cell casts

Differential diagnosis

- IgA nephropathy (HSP)
- Hepatitis B nephritis
- Endocarditis nephritis
- Lupus nephritis
- Drug induced nephritis
 - Antibiotic-associated nephritis (eosinophilic): cephalosporins, ciprofloxacin, ethambutol, isoniazid, macrolides, penicillins, rifampicin, sulfonamides, tetracycline
 - Other: NSAIDS

Treatment

- Penicillin to treat the Streptococcal infection if still present
- Treat hypertension
 - Frusemide 0.5-1mg/kg QID
 - Nifedipine
 - Captopril (watch for hyperkalaemia)
- Most start to resolve within 2 weeks, normal creatinine by 4 weeks
- Dialysis only for progressive renal failure, acidosis, hyperkalaemia, intractable hypertension

Complications and prognosis

- Almost all resolve
- Some relapse if exposed to GAS antigens again (like Rheumatic Fever)
- Hypertension
- Albuminuria
- Adult renal impairment glomerulosclerosis

Chronic kidney disease

Causes of chronic kidney disease in children	Proportion of chronic kidney disease
 Congenital abnormalities of kidney or urinary tract Obstructive (PUJ obstruction, posterior urethral valves) Reflux Hypoplasia 	50%
Steroid resistant nephrotic syndrome	10%
Chronic glomerulonephritis	10%
"Renal ciliopathies": e.g. cystic kidney disease (AD PKD)	5%
Haemolytic Uraemic Syndrome (HUS)	
Nephrolithiasis – kidney stones	
Chronic infections – e.g. tuberculosis	

Posterior urethral valves

- Congenital obstructive posterior urethral membrane
- Posterior urethral valves:
 - boys, minimal stream, marked
 bladder distension, hydro nephrosis and hydro-ureter)
- Micturating Cysto-Urethrogram
- Surgically curable, urgent

Congenital obstructive renal diseases

- Pelvi-ueretric junction (PUJ) obstruction
 - Can be bilateral or unilateral
 - Many resolve spontaneously
 - Infection because of stasis
 - How to know if a kidney is working?

Chronic renal disease: complications

- Growth impairment
 - Especially common in congenital renal anomalies (as rapid growth occurs in the first 2 years), stunting.
 - Inadequate nutrition, low growth hormone-IgF-1, bone failure, acidosis, anaemia
- Bone and mineral disorders
 - Kidneys do not clear phosphate → hyperparathyroidism, ↓ calcium, bone resorption
 - Damaged kidneys cannot convert D3 into its active form calcitriol→ hypocalcaemia
 - Treatments
 - Calcium supplements
 - Active forms of vitamin D supplements (calcitriol)
 - Phosphate binders (calcium carbonate)

Chronic renal disease: complications

- Anaemia
 - $-\downarrow$ Erythropoietin
 - Iron deficiency
- Hypertension
 - Needs to be controlled to limit left ventricular hypertrophy and progression of renal disease (especially proteinuria)
 - Endothelial dysfunction, arterial thickening, calcification, LVH
- Prevention of cardiovascular complications
 - Treat hyperphosphataemia, hyperparathyroidism, anaemia, hypertension

Care of children with chronic kidney disease

- Correct any correctable problems (surgical, medical)
- Renal impairment has effects on many organs. Look after the whole child: growth, bones, anaemia, cardiovascular system, prevention of infection, avoid drug toxicity (e.g. steroids, nephrotoxic drugs).
- A written care plan and a trusted primary doctor
- Teach the family and the child
- Attention to schooling, mental health, family stress.