MMed and DCH Lectures

HIV in children and adolescents

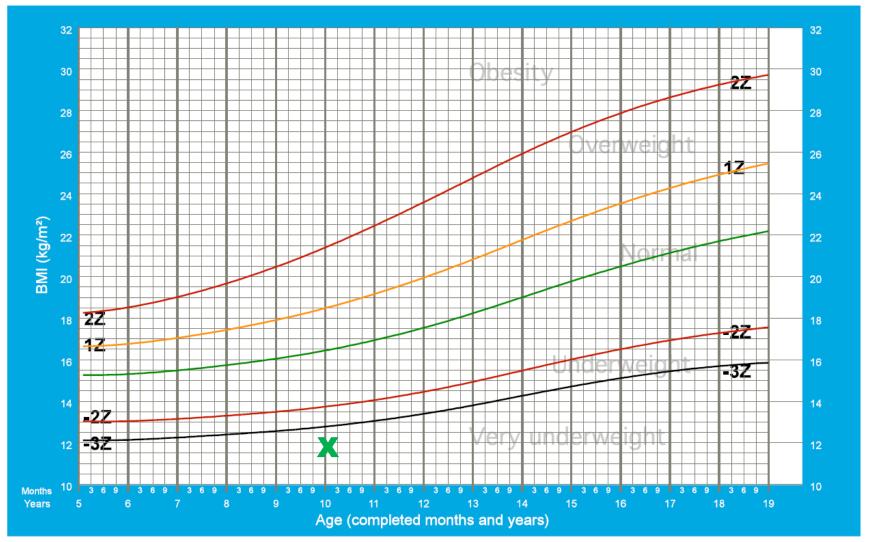
August 30, 2021

Prof Trevor Duke

Aims of today's session

- Learn about HIV in children and adolescents
- Understand about types of ART, ART resistance, why children may fail treatment, and how to recognize and treat this.
- Chronic comorbidities in children and adolescents living with HIV

Case 1. Joseph: 10 year old boy with HIV


- Presented with cough 2 weeks
- HIV on ART for 4 years, adherent, very attentive father
- Severe muscle wasting, alert, no respiratory distress, scattered chest crepitations, no effusion. Painful lymph nodes in right groin, extreme tenderness over right shin.
- Sputum GeneXpert positive for MTB, Rifampicin sensitive
- What else do you want to know?
- Weight = 18.8kg

- Is his father on treatment? No, he and the 2 other children are seronegative
- Is his mother on treatment? She passed away last month
- What treatment was she on? The same as Joshua: AZT / 3TC / NVP

FBC

Haemoglobin	8.9 g/dl	(10.5 - 13.5)
Platelets	650 x 10 ⁹ /l	(150 - 400)
WCC	$14.6 \times 10^9/I$	(6 - 18.0)
Neutrophils	$12.0 \times 10^9/I$	(1.0 - 8.5)
Lymphocytes	$0.8 \times 10^9/I$	(1.5 - 10.0)
MCV	65	(74 - 85)

Body mass index (BMI) for age: Boys (5–19 years of age, Z-scores)

BMI

Weight (kg)

Height² (m)

18.8 kg

 1.26 m^2

BMI = 11.8

For further information on the growth charts, please refer to: http://www.who.int/growthref/en/

PEDIATRIC INFECTIOUS DISEASES (I. BROOK, SECTION EDITOR)

Antiretroviral Resistance Patterns in Children with HIV Infection

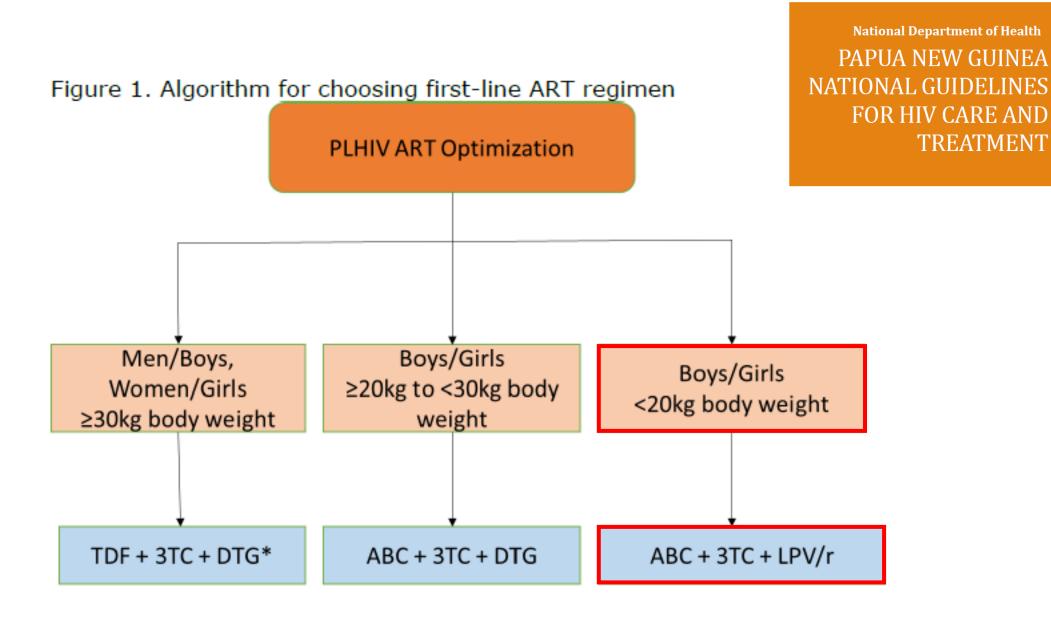
J. Nuttall ¹ · V. Pillay ¹

- High levels of resistance, particularly to non-nucleoside reverse transcriptase inhibitors (NNRTIs), and poor treatment outcomes on NNRTI-based 1st line ART among infants and young children.
- 354/1128 (31.3%) children had DRMs
- Median prevalence of NNRTI resistance was 49.3% (range 7.5–100%)
- 4/7 studies found > 50% of PMTCT-exposed children had NNRTI DRMs.

Pre-treatment drug resistance to NNRTIs

- 15-18% among newly diagnosed adults in PNG likely higher among children.
- Many children on the wards clinically failing ART therapy still on Nevirapine-Lamivudine-Zidovudine (NVP/3TC/AZT) triple therapy

RESEARCH ARTICLE


High Levels of Transmitted HIV Drug Resistance in a Study in Papua New Guinea

Evelyn Lavu¹, Ellan Kave¹, Euodia Mosoro¹, Jessica Markby², Eman Aleksic², Janet Gare^{2,3}, Imogen A. Elsum², Gideon Nano⁴, Petronia Kaima⁵, Nick Dala⁴, Anup Gurung⁶, Silvia Bertagnolio⁷, Suzanne M. Crowe², Mark Myatt⁸, Anna C. Hearps², Michael R. Jordan^{9,10}*

Classes of HIV drugs, and examples

- NNRTI non-nucleoside reverse transcriptase inhibitors (Nevirapine, Efavirenz)
- 2. NRTI nucleoside reverse transcriptase inhibitors (Lamivudine, Zidovudine, Abacavir, Emtricitabine, Tenofovir)
- 3. PI protease inhibitors (Lopinavir / ritonavir: "Kaletra")
- 4. INSTI Integrase strand transfer inhibitor (Raltegravir, Dolutegravir)

PNG National Guidelines for HIV care and treatment: 2019

Types of ART resistance

- Acquired drug resistance develops when HIV mutations emerge due to viral replication in person on ART
- Transmitted drug resistance detected in ART drug naïve individuals, occurs person become infected with a virus that has drug resistance mutations (DRMs)

 Pre-treatment HIV drug resistance – detected in ARV drug-naïve individuals initiating ART

WHO resistance threshold

- A national pre-treatment resistance of >10% to an ARV drug or drug class: transition to a different first-line ART regimen.
- PDR is a strong predictor of treatment failure on first-line ART in infants and children, this has especially been shown with NNRTI DRMs.
- Some countries have regular surveillance for drug resistance that is performed on dried blood spots as part of early infant diagnosis (EID) testing in PMTCT programs.

Recommended second-line treatment?

It depends on what the first-line therapy has been:

- a) If 1st line NNRTI based (Nevirapine or Efavirenz) then 2nd line therapy can either be:
 - (i) Protease inhibitor: **Lopinavir/ritonavir** plus 2 NRTIs (ABC/3TC/LPVr)
 - (ii) Integrase strand transfer inhibitor, e.g. **Dolutegravir** plus 2 NRTIs (ABC/3TC/DTG)
- b) If *already* on a PI-based first-line therapy WHO recommends Dolutegravir plus 2 NRTIs (ABC/3TC/DTG)

When to change from first-line therapy to second-line therapy?

- Viral failure: persistently detectable viral load >1000 copies/mL (2 consecutive viral load measurements 3-months apart with adherence support between measurements), after 6 months of starting a new ART regimen.
- Immunological failure: <5 years: Persistent CD4 levels <200 cells/mm3; >5 years: Persistent CD4 levels <100 cells/mm3.
- Clinical failure: New or recurrent clinical event indicating advanced or severe immunodeficiency (WHO clinical stage 3 and 4 clinical condition with the exception of TB) after 6 months of effective treatment

Viral load testing

- Viral load test: 6 and 12 months after initiation of ART and every 12 months thereafter.
- For children on NNRTI-based regimens: switch ART at the first unsuppressed viral load test result (do not follow the routine adherence interventions and repeat viral load after 3 months as recommended if the child is on a DTG-based or PI-based regimen and has an unsuppressed viral load).

- WHO new guidelines
 1st and 2nd line ART for all children >4 weeks (≥3Kg): DTG-based regimens
- The preferred regimen for a child/adolescent 30 Kg and above: TDF +3TC + DTG.

Table 1. Summary of preferred and alternative first-line ART for neonates and children

	Neonates	Children
Preferred	AZT+3TC+RAL ^a	ABC + 3TC + DTG
Alternatives	AZT+3TC+NVP	ABC + 3TC + LPVr TAF° + 3TC (or FTC) + DTG ABC + 3TC + RAL ^d
Special circumstances ^d	AZT+3TC+LPVr ^b	ABC + 3TC + EFV ^e (or NVP ^f) AZT + 3TC + EFV ^e (or NVP ^f) AZT + 3TC + LPVr (or RAL)

Dolutegravir-based therapy (*Tivicay*)

- 2018: recommended by WHO
- ALL infants and children (>4 weeks and at least 3 kg) established on 1st and 2nd line ART should be rapidly transitioned to DTG-based regimens irrespective of their current regimen.
- Viral load testing not a precondition. Children should not have their transition to DTG delayed due to lack of documented viral load.
- DTG high genetic barrier to drug resistance
- Child formulation: 10mg dispersible tablet

What treatment should Joseph be on?

TDF/3TC/DTG

Or

ABC/3TC/DTG

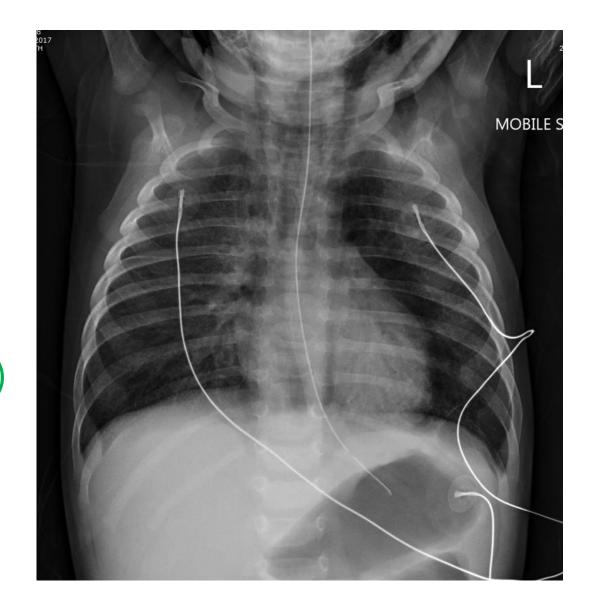
CD-4 T-cell lymphocytes

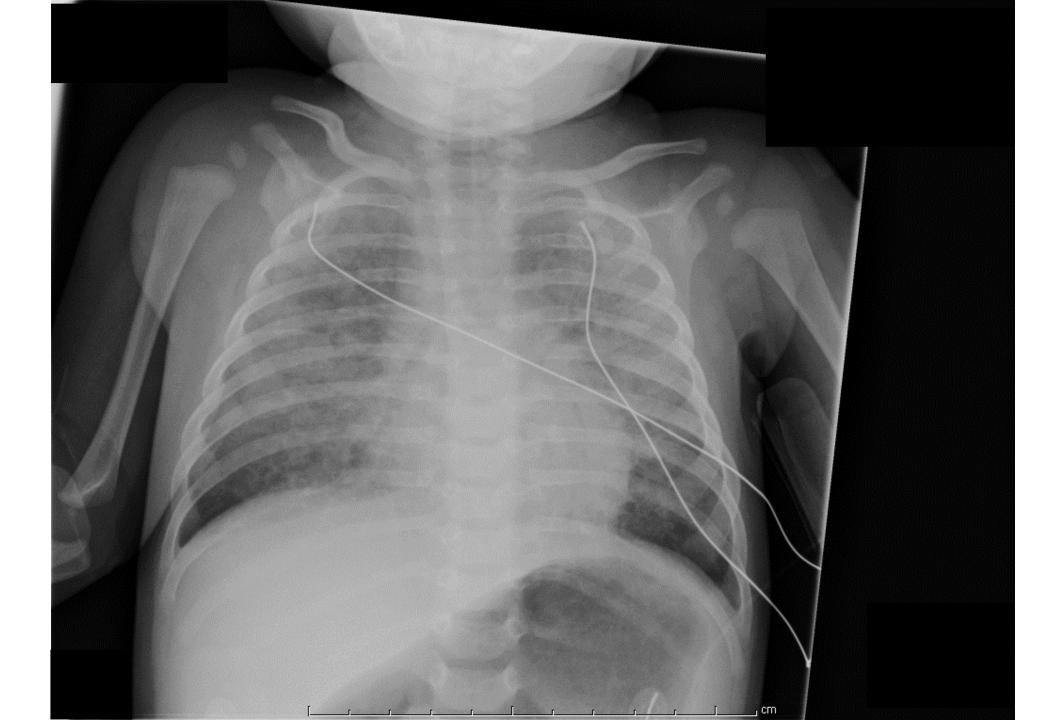
Age	Normal / mild immune	Moderate immune	Severe immune
	suppression	deficiency	deficiency
	CD4 cells/µl	CD4 cells/µl	CD4 cells/µl
Infants	>1500	750-1499	<750
1-5 years	>1000	500–999	<500
6-12 years	>500	200-499	<200

IRIS: Immune Reconstitution Inflammatory Syndrome

- Paradoxical clinical deterioration despite good immunological and virological response to antiretroviral therapy.
- It is due to the improving immune system recognising and mounting an immune response to organisms that have infected the body during the early stages of HIV infection.
- First 6 weeks after starting ART
- Clinical features depend on the causative organism and the organ system that is infected
- IRIS caused by MTB: high fever, lymphadenopathy, worsening of the original TB lesion, deteriorating chest x-ray (such as development of a miliary pattern or pleural effusion)

Infections that can manifest as IRIS

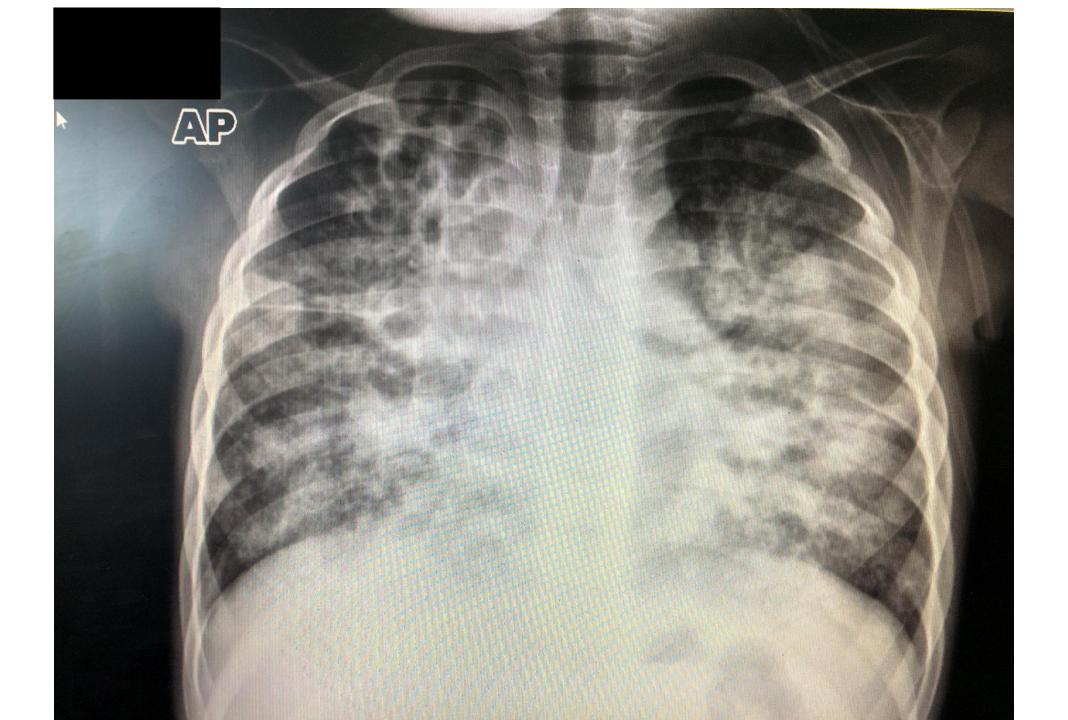

- Mycobacterium tuberculosis (MTB)
- Mycobacterium Bovis (BCG)
- Herpes simplex virus
- Mycobacterium avium complex
- Mycobacterium leprae
- Cryptococcus neoformans
- Aspergillus
- Candida
- Pneumocystis carinii
- CMV, HPV, Hepatitis B and C viruses (HBV, HCV)


Case 2.

- 5 month old girl, presents with severe respiratory distress
- "HIV-exposed"
- What do you want to know?
- Awaiting "DBS" result
- On 6 weeks of AZT/NVP, then NVP until 4 months of age
- What do you think?

- Improved on high-dose cotrimoxazole
- Air-leak, think pneumocystis
- PjP can improve within 48 hours of starting treatment, other infections tend to take longer (TB)
- What ART should she be on?

PPTCT


National Department of Health
PAPUA NEW GUINEA
NATIONAL GUIDELINES
FOR HIV CARE AND
TREATMENT

ARV prophylaxis for Infants at High Risk of MTCT	ARV prophylaxis for Infants at Low Risk of MTCT
AZT and NVP for the first 6 weeks of life	NVP only for the first 6 weeks of life
NVP only for an additional 6 weeks	
Total 12 weeks	Total 6 weeks

Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy

Lisa J Frigati, Wole Ameyan, Mark F Cotton, Celia L Gregson, Jacqueline Hoare, Jennifer Jao, Edith D Majonga, Landon Myer, Martina Penazzato, Ruramayi Rukuni, Sarah Rowland-Jones, Heather J Zar, Rashida A Ferrand

- More common now that children are surviving on ART
- Late commencement of effective ART a risk

Chronic comorbidities: chronic lung disease

- Chronic bronchitis, bronchiectasis
- Obliterative bronchiolitis
 - Airflow obstruction (FEV1), inflammation and dense fibrous scarring of bronchiolar epithelium
- Some will be post-viral (adenovirus), post-TB + chronic bronchitis + immune deficiency
- Management
 - Keep colonising bacteria from flaring up cotrimoxazole / azithromycin
 - Vaccines (PCV, influenza)
 - Nutrition
 - Avoid smoking, air pollution
 - Bronchodilators (partially effective)
 - Diuresis
 - Avoid steroids
 - Oxygen
 - Pulmonary hypertension (sildenafil)

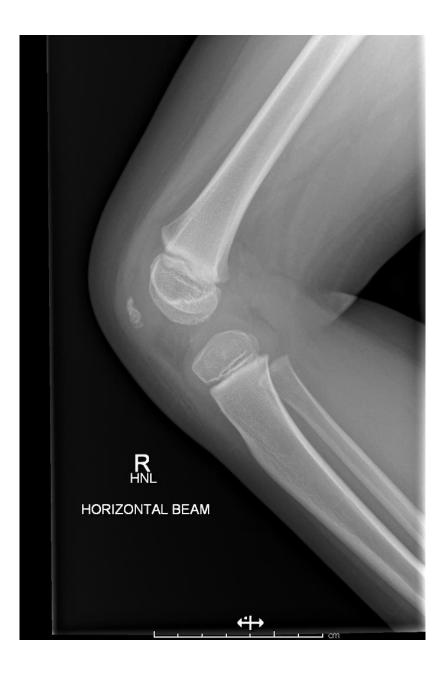
Cardiovascular comorbidities

Cardiac

- Left ventricular systolic and diastolic dysfunction
- Left ventricular hypertrophy
- Cardiac conduction detects
- Pericardial thickening

Vascular

Premature atherosclerosis – Protease inhibitors (PI)


Renal and metabolic disease

Renal

- Glomerular injury microalbuminuria
- Renal tubulopathy (loss of protein, phosphate, glucose)
- Tenofovir

Metabolic

- Lipodystrophy
- Insulin resistance

Musculoskeletal

- Stunting
- Low bone density
 - Inadequate daily calcium intake, vitamin D deficiency, pro-inflammatory state
 - Poor muscle strength lack of impact load on bones, therefore bone accumulation / development poor
 - Tenofovir accelerates bone loss
 - Fracture risk

Neurological

- Many factors effect brain development in HIV
 - Virus replication in CNS and inflammation irreversible injury before ART established
 - Neurotoxic effects of ART
 - Nutrition and micronutrient e.g. breast feeding and myelination
 - Psychosocial factors stigma, discrimination, lack of schooling, responsibility for siblings, unstable guardianship, lack of early life opportunity to learn

Malignancy

- Kaposi sarcoma
- Non-Hodgkin lymphoma
- Cervical cancer from HPV

All reduced by effective ART

Skin

- Skin rashes often severe and widespread
 - Molluscum contagiosum
 - Seborrheic dermatitis
 - Plantar warts
- Drug reactions SJS
- Reconstitution immune syndrome (unmasking an underlying skin problem when immune reconstitution occurs after ART begins)

Stevens-Johnson Syndrome in HIV

- Nevirapine
- Suphonamides
- AEDs

Medications as Risk Factors of Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis in Children: A Pooled Analysis. Pediatrics 2009, 123 e297-e304

Erythema multiforme major with swollen lips and crusted erosions. Lancet 2018; 392: 592

Chronic comorbidities in children and adolescents with perinatally acquired HIV infection in sub-Saharan Africa in the era of antiretroviral therapy

Lisa J Frigati, Wole Ameyan, Mark F Cotton, Celia L Gregson, Jacqueline Hoare, Jennifer Jao, Edith D Majonga, Landon Myer, Martina Penazzato, Ruramayi Rukuni, Sarah Rowland-Jones, Heather J Zar, Rashida A Ferrand

- Dysregulated immune system
- Gut translocation
 - malnutrition, chronic diarrhoea, CMV infection of GI mucosal epithelium
- Inflammation
- Infection with HIV virus
- Drug-side effects

Monitoring of children with HIV

- 6 monthly CD4 or viral load
- Disclosure
- Adherence and encouragement
- Vaccines
- School participation, self esteem, mental health
- Nutrition and development
- Mitigation of chronic comorbidities
- Drug side effects

	ART Regimen	What to do when TB treatment is started	
Neonates	RAL-based*	Dose adjustment needed: See dosing annex	
	NVP-based	Change of regimen needed: NVP to be substituted as soon as possible with DTG or LPVr (with appropriate dose adjustment).	
Children	DTG-based regimen*	Dose adjustment needed: See dosing annex	
	LPVr-based regimen	Transition to DTG-based regimen (with appropriate dose adjustment) is preferable, where not possible LPVr dose adjustment is needed	
	RAL-based regimen	Transition to DTG-based regimen (with appropriate dose adjustment) is preferable, where not possible RAL dose adjustment is needed	
	TAF-containing regimen	Change of regimen needed: TAF to be substituted with ABC or TDF	
	ATVr-based regimen	Change of regimen needed: replace ATVr with DTG if DTG naïve, with LPVr if DTG experienced	
	DRVr-based regimen	Change of regimen needed: replace DRVr with DTG if DTG naïve, with LPVr if DTG experienced	