MMed and DCH Lectures

CPAP and High-flow respiratory support Sept 13, 2021

Prof Trevor Duke

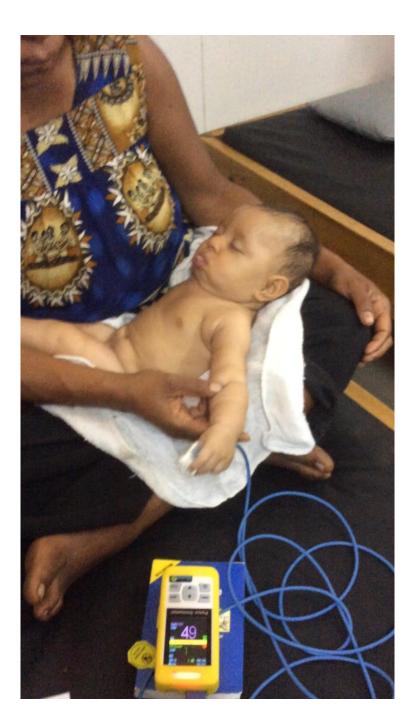
Aims

- Explain how CPAP works
- Describe the different types of CPAP

CPAP and COVID

- Oxygen if SpO₂<92%
- If still hypoxic \rightarrow prone position, and give more oxygen
- If still hypoxic \rightarrow use CPAP / High-flow
- Indications for CPAP
 - Severe respiratory distress or hypoxaemia despite oxygen therapy + prone position

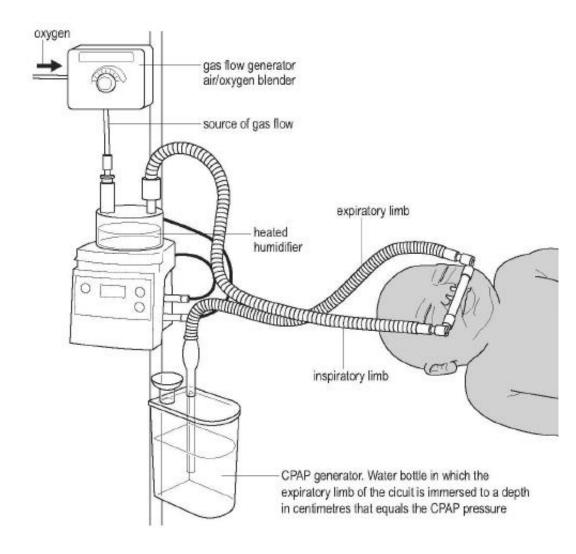
Where COVID is endemic...


- Acts like any other pathogenic respiratory virus in children
 - Most susceptible children at risk of severe disease
- Occasionally causes immune over-activation
- Often a co-pathogen

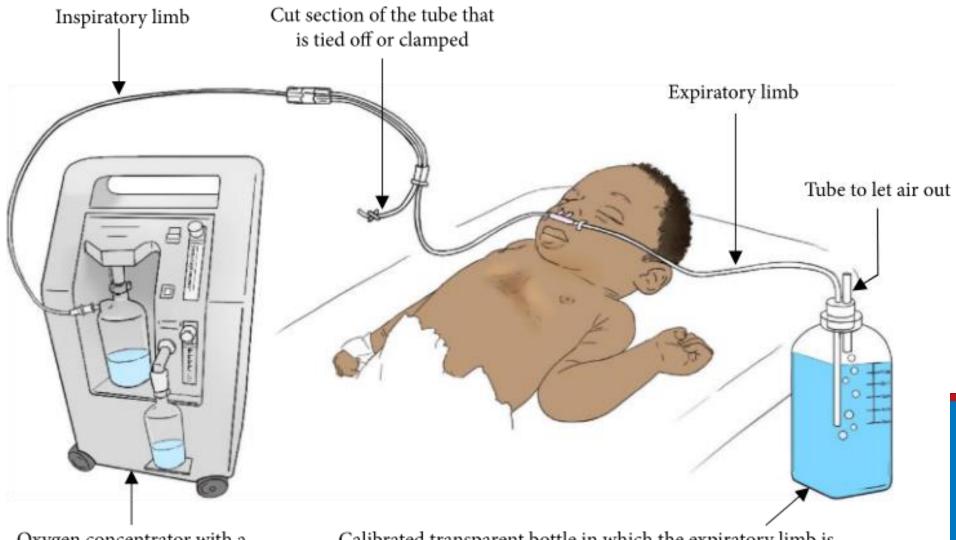
Treatment of severe COVID

- Triage: Assess for emergency signs
- Emergency treatment:
 - Give oxygen
 - Intravenous fluid to correct dehydration if present (10-20ml/kg)
 - If still signs of shock: adrenaline infusion. Put 6mg adrenaline in 1000 ml normal saline and run at 0.5ml/kg/hour (0.05 mcg/kg/min)
- History / examination
- Diagnosis: look for secondary bacterial sepsis
- Treatment
 - Antibiotic treatment for sepsis (ceftriaxone + flucloxacillin)
 - Dexamethasone 0.15mg/kg Q12
- Monitor vital signs, SpO₂, hydration state, and blood pressure
- **Supportive care**: avoid over-hydration, maintain blood glucose, nutrition, prone positioning

World Health

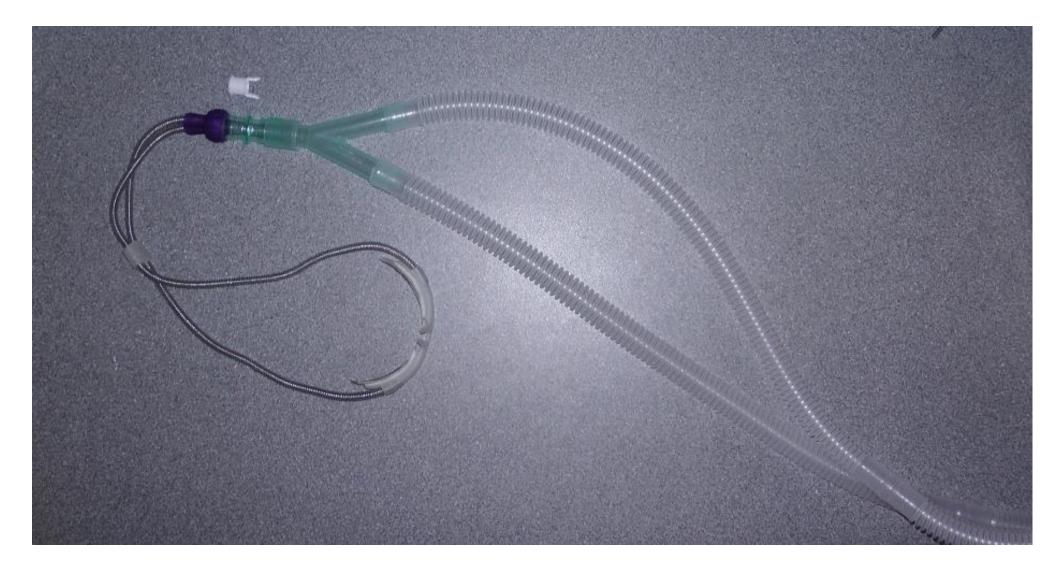

CPAP and High Flow respiratory support

- Bubble CPAP
 - Concentrator
 - Fisher & Paykel bubble-CPAP machine
- CPAP
 - ventilator
 - CPAP driver
- High flow nasal cannula oxygen therapy
 - Fisher & Paykel high flow device
 - Airvo

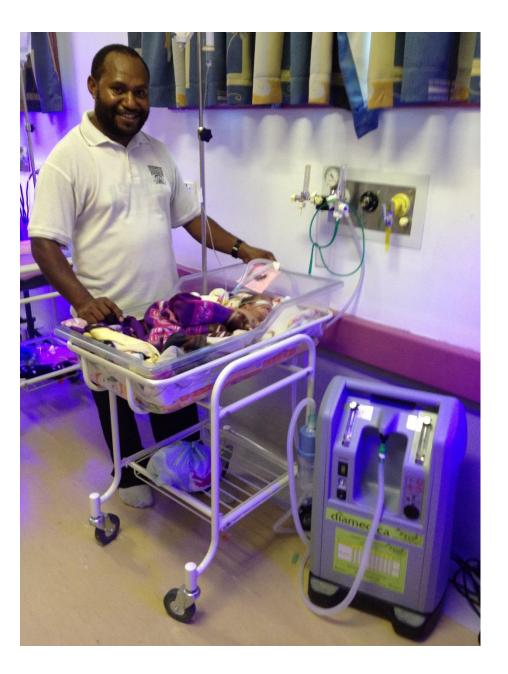

Components of CPAP

- Source of air / gas flow
 - Oxygen concentrator / cylinder
 - Compressor
 - CPAP driver
 - Ventilator
- Oxygen source can be same as gas flow source, or blended oxygen / air
- Patient interface with 'air-tight' seal
 - Nasal prongs
 - Mask full face, nose and mouth, nose
- Circuit with adjustable resistance on expiratory limb
 - Pressure valve (CPAP driver or ventilator) in mask, circuit or ventilator
 - Under-water seal (bubble-CPAP)
- Humidification source

Bubble-CPAP


Oxygen concentrator with a humidifier. Oxygen flow rate is initially set at 5 L/min. Calibrated transparent bottle in which the expiratory limb is immersed. The depth of immersion in centimetres is equivalent to the CPAP pressure (e.g. 5 cm below water surface = 5 cm H_2O). Constant bubbling indicates that CPAP is being generated.

Oxygen therapy for children

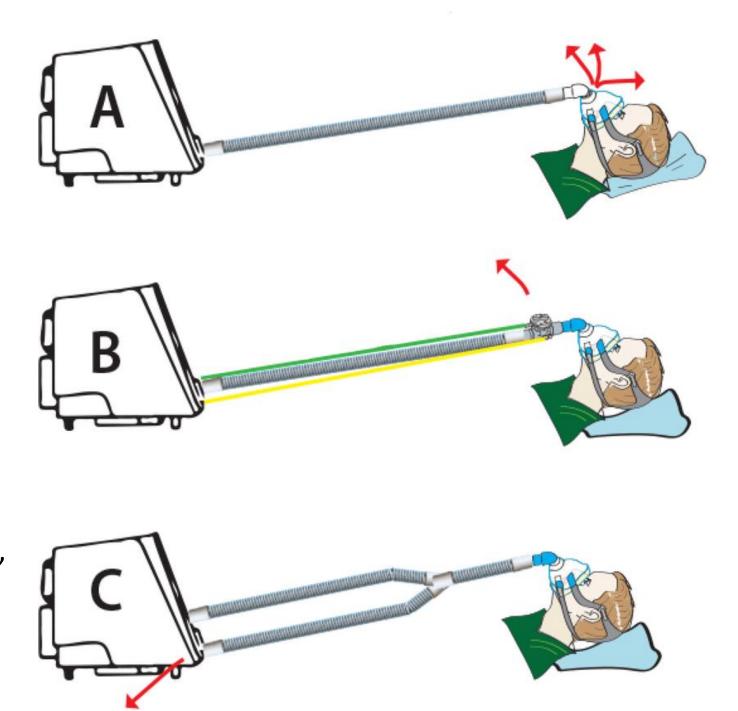


Optiflow nasal prongs

Bubble-CPAP patient interface

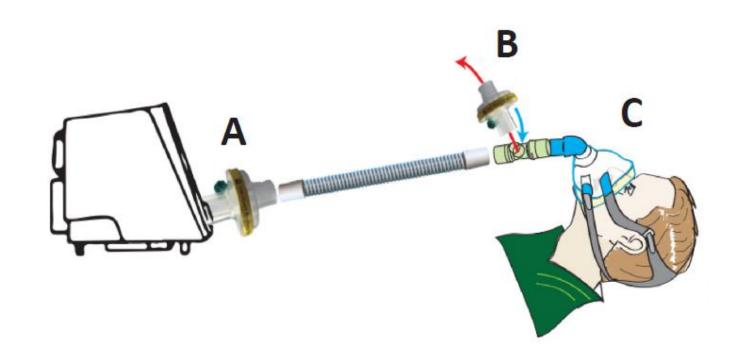
- Modified oxygen prongs
 - Easy to make, cheap
 - Resistance sometimes means the bubbling is due to tubing resistance, not airway resistance
 - Safeguard: turn machine on, connect circuit, check for bubbling *before* applying nasal prongs to the patient
- Optiflow nasal prongs
 - Expense and availability
 - Low resistance so no problem of auto-generation of bubbling at usually required flow rates

Complications of CPAP


- Pressure areas
 - Depends on the patient interface
- Gastric distension
 - Prevent with a nasogastric tube
- Pneumothorax
 - Rare, but be alert to at-risk children (Staph pneumonia with pneumatocoeles, PjP, asthma).

CPAP ventilators

- Source of air / gas flow
 - Compressor in CPAP driver or Ventilator
- Oxygen source blended oxygen plumbed into ventilator
- Patient interface with 'air-tight' seal
 - Mask full face, nose and mouth, nose
- Circuit with adjustable resistance on expiratory limb
 - Pressure valve (CPAP driver or ventilator) in mask, circuit or ventilator
- Humidification source
 - Built in heated water humidifier (+/- hot wire that ensures humidification in the long circuit)


CPAP ventilators

- A. Vented mask Single lumen passive circuit
- B. Non-vented closed mask
 Single lumen active circuit
 exhalation via holes in the
 circuit (exhalation port)
- C. Non-vented closed mask. Double lumen circuit Exhaled air goes back to the machine via the exhalation tube, controlled by exhalation valve in the machine

Viral filters: needed at 2 points

- 1. To protect the surroundings filter at the exhalation valve
- 2. To protect the patient from contamination from the environment (machine) filter at the gas outlet start of inspiratory circuit

High flow nasal cannula oxygen therapy

- Heated-humidified high flow
- Nasal prongs (Optiflow)
- 2 litres per kg per minute
- Humidify at 37° C
- Blended oxygen
- Start FiO₂ 0.5-1.0
- Watch RR, HR, chest in-drawing
- Reduce FiO₂ as signs improve, aim for <0.5 (50%)
- Generates 4-8 cmH₂O PEEP

Airvo 2

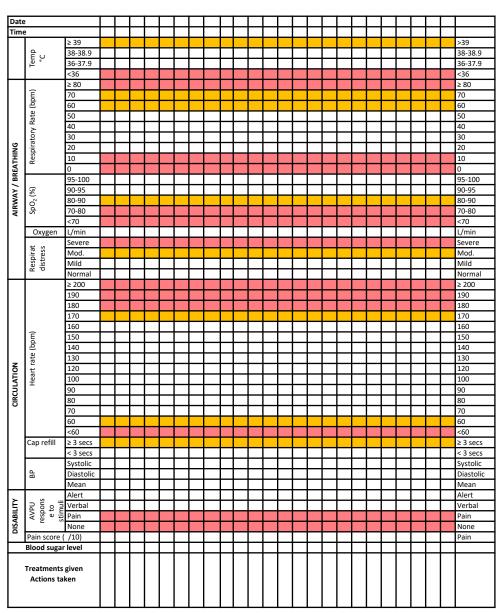
- Air flow generator which can deliver warmed humidified air at a flow rate of between 5 and 45 litres per minute.
- Inbuilt oxygen blender and oxygen analyser, thereby allowing specific amounts of oxygen to be added to the air flow and monitored precisely via an LED display.
- Cheaper than currently used circuits (MR850) \$1850 v \$3000.
- Ease of use

Respiratory distress score

		Mild = 0	Moderate = 1	Severe = 2
1	Нурохаетіа	Mild hypoxaemia SpO ₂ 90–93%	Moderate hypoxaemia SpO ₂ 85–90%	Severe hypoxaemia SpO ₂ <85%
2	Chest wall retraction	None or minimal	Moderate chest wall retraction	Marked chest wall retractions, tracheal tug
3	Respiratory sounds wheeze and crackles	Good air extry on auscultation Minimal or some wheeze	Moderately reduced air entry. Wheeze and some crepitation on auscultation	Loud audible wheeze without stethoscope. Poor air entry on auscultation Widespread crepitations.
4	Respiratory rate / min	<40	40-60	>60
5	Heart rate / min	<140	140-170	>170

Paediatric monitoring and response chart UR Number

Name


Length / height

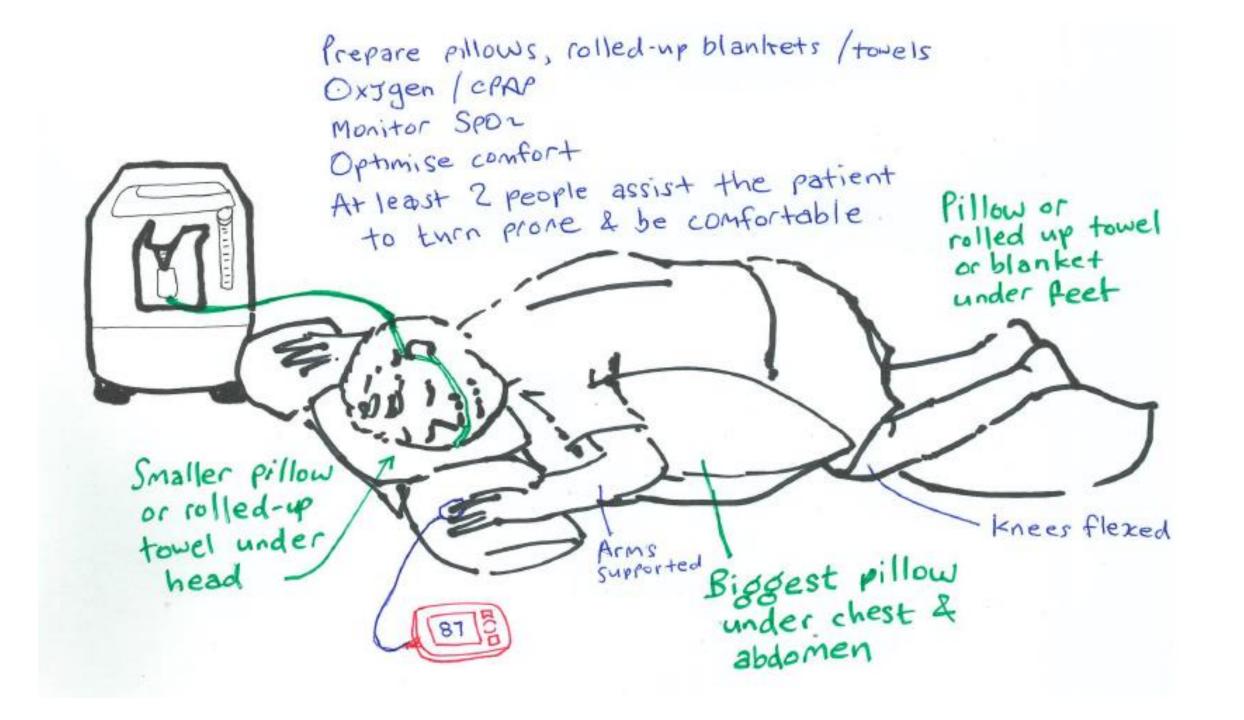
Frequency of observations:

Age:

Diagnoses:

Weight:

Technical problems


Problems identified	Solutions	
CPAP circuits split if they are washed multiple	Need to check integrity and performance of all	
times or stepped upon. This leads to air leaks	equipment regularly, at least weekly.	
and ineffective CPAP.	Use of robust circuits that can be autoclaved or	
Oxygen concentrators run at high flow rates (at	cleaned will reduce the risk of splits and leaks	
the limits of their performance), may produce lower concentration of oxygen	Need an oxygen analyser to check flow rates and oxygen concentration weekly	
Some humidifiers are ineffective , and if using high flows for prolonged time can result in drying of airway secretions and clinical failure	Need to ensure effective humidification if using high gas flows	
	Need an environment free from dust to avoid	
	concentrator malfunction	

Clinical problems

Problems identified	Solutions
Important to identify comorbidities , severe	Guideline
malnutrition, anaemia, HIV, alternative diagnoses such as congenital heart disease	A detailed ward round each day to identify problems
Delay in administration of CPAP	Monitoring and response chart
Nursing shortages	Ongoing training for nurses and doctors
Registrar availability to review patients on CPAP	Nurse: patient ratios not less than 1:4 in the high dependency / intensive care area
	A paediatric doctor to be available 24 hours a day and review patients on CPAP regularly, no less than every 4 hours

System problems

Problems identified	Solutions
Equipment maintenance	Need a trained nurse to maintain the oxygen concentrators, nasal prongs, circuits, spare parts.
	Nurses need to be familiar with equipment, cleaning, routine maintenance and use.
	Mechanism for procurement of spare parts.

What works in COVID?

- Oxygen
- Dexamethasone
- Antibiotics if secondary bacterial infection
- Restrictive fluids
- Prone positioning
- CPAP
- Close clinical monitoring
- Aspirin
- Zinc