MMed and DCH Lectures

Weekly by Zoom

Prof Trevor Duke

MMed and DCH Lectures

Meningitis and encephalitis in children

May 25, 2020

Prof Trevor Duke

Care of any seriously ill child

- Triage
- Emergency treatment
- History and examination
- Laboratory investigations, if required
- Main diagnosis and other diagnoses
- Treatment
- Supportive care
- Monitoring
- Discharge planning
- Follow-up

Triage

- Brief history of the presenting problem
- Take temperature and weight
- A. Listen for stridor or obstructed breathing
- B. Look for cyanosis and for signs of respiratory distress (chest indrawing, tracheal tug), check SpO₂
- C. Feel the skin temperature of the hands and feet, feel the pulse for volume, capillary refill time
- D. Assess for lethargy and level of interaction.

- Bacterial meningitis
- Mastoiditis and intracranial abscess

- Viral encephalitis
- Tuberculous meningitis
- Other intracerebral haemorrhage

Treatment

- A: positioning, NG tube to protect from aspiration
- B: oxygen, CPAP
- C: fluid bolus if signs of shock
- Antibiotics: Ceftriaxone + flucloxacillin
- Anticonvulsants

Meningitis aetiology

- Children >1 months
 - Streptococcus pneumoniae
 - Haemophilus influenza type b
 - Plasmid-mediated beta-lactamase
 - Decreased affinity to penicillin-binding proteins
 - Neisseria meningitides
- Neonatal meningitis (up to 2 months)
 - E. coli
 - Group B streptococcus

Antibiotic resistance

	1996–2000	2001-2005	P value
S. pneumoniae			
Penicillin	29/116 (25.0)	9/61 (14.8)	0.12
Chloramphenicol	1/115 (0.9)	3/61 (4.9)	0.09
Cotrimoxazole	9/116 (7.8)	6/60 (10.0)	0.64
Tetracycline	2/69 (2.9)	2/27 (7.4)	0.32
H. influenzae			
Ampicillin	27/104 (26.0)	27/58 (46.6)	0.01
Chloramphenicol	27/104 (26.0)	24/58 (41.4)	0.04
Cotrimoxazole	35/104 (33.7)	28/58 (48.3)	0.07

CSF specimens in children with meningitis, Goroka

Complications

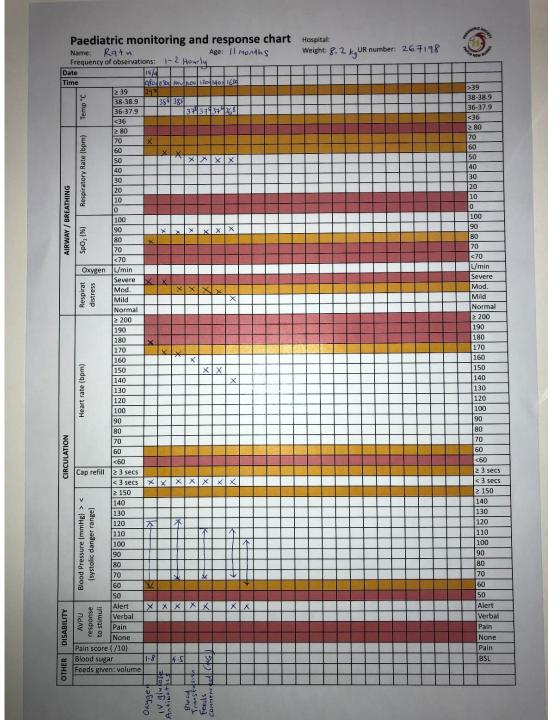
Acute complications

- A. Airway obstruction, aspiration
- B. Breathing: Hypoxaemia, hypercarbia
- C. Circulation: Shock
- D. Drowsiness / disability: Seizures / coma
- E. Electrolytes hyponatraemia, acidosis Environment
- F. Fluid overload, dehydration
- G. Glucose Hypoglycaemia
- H. Haematology coagulopathy, thrombosis

Chronic / long term complications

- Motor ischaemic stroke, hemiplegia
- Hearing loss neurosensory 10%
- Visual impairment
- Epilepsy
- Hydrocephalus
- Sub-dural collections

Cerebral abscess


- Gram positive
 - Streptococcus milleri, viridans
 - Staph aureus
- Gram negative aerobic
 - H. influenza
 - E. coli, Proteus
- Anaerobic
- Mastoiditis, chronic serous OM
- Cyanotic congenital heart disease
- Multi-focal Staph infection

Treatment and supportive care

- Nurse in ICU
- Supportive care
 - 30° head up
 - Airway support
 - Oxygen or CPAP
 - NG feeding, careful use of IV fluids.

- Monitoring
 - Continuous / hourly, use a monitoring chart

Immunisation

- Encapsulated bacteria (polysaccharide outer covering)
 - Limited immune response to polysaccharides <2 years
 - Protein conjugate with polysaccharide
- Haemophilus influenza type b vaccine (Hib, Pentavalent)
 - Introduced in PNG 2008
 - Protein conjugate with Hib-polysaccharide
- Pneumococcal conjugate vaccine (PCV)
 - Introduced in PNG 2014
 - 13-valent (90+ serotypes)

Meningococcal sepsis

- "Purpura fulminans"
 - DIC APTT↑ PT↑ Fibrinogen↓ platelets↓
- Metabolic acidosis
- Thrombosis, tissue ischaemia
- Ceftriaxone + steroids
- Supportive care
- Prevention meningococcal vaccine
 - Conjugate vaccines serogroups A, C, W and Y
 - Recombinant protein serogroup B

Febrile encephalopathy

 Acute onset of fever and either a change in mental state (such as confusion, disorientation, coma or inability to talk) or new onset of seizures (not including simple febrile convulsions).

Causes of febrile encephalopathy 12 studies, n=2077

- India (4)
- PNG (3)
- Nepal (1)
- Kenya (1)
- Cambodia (1)
- China (1)
- Vietnam (1)

Causes of febrile encephalopathy	Total N (%)		
Total	2077		
Viruses	297 (14.3)		
Bacterial meningitis	262 (12.6)		
Cerebral malaria	203 (9.8)		
Tuberculous meningitis	108 (5.2)		
Septicaemia	13		
Disordered electrolytes	6		
Hepatic encephalopathy	3		
DKA	3		
Reyes syndrome	3		
Acute Disseminated Encephalomyelitis	2		
Cryptococcus neoformans	1		
Shigellosis	1		
Enteric fever	1		
Prolonged coma after seizure	1		
Intracranial bleed	1		
Known causes	905 (44%)		
Unknown	1172 (56%)		

Viruses	297 (14.3)
Japanese Encephalitis	156 (7.5)
Enterovirus	58 (2.8)
Dengue	31 (1.5)
Cytomegalovirus	19
Herpes Simplex Virus	15
Mumps	13
HHV-7 (Roseola, febrile seizures)	12
HHV-6 (Roseola: fever, diarrhoea, rash)	11
Influenza	9
Rubella	7
Measles	4
Varicella zoster	3
Epstein-Barr Virus	1

Steroids in meningitis

- Effective in:
 - Reducing sensorineural hearing loss in Hib meningitis
 - Reducing mortality in adults with pneumococcal meningitis
- If given at the same time or 15 minutes before the first dose of antibiotics (ceftriaxone)
- Dose
 - Dexamethasone: 0.15mg/kg IV Q6 x 48 hours
 - Methylprednisolone: 1mg/kg Q6 x 48 hours

Fluids in meningitis

Duke T et al. Ann Trop Paeds

346 children with bacterial meningitis randomised to: Oral /NG milk at 60% maintenance or IV half-normal saline + 5% dextrose at 100% maintenance

	Restricted enteral	Intravenous (100%)
Number	172	174
Died during admission	31 (18.0%)	28 (16.1%)
Survived, but severe sequelae	26	15
Poor outcome (death or severe neurological sequelae)	57 (33.1%)	43 (24.7%)

Sunken eyes or poor skin turgor risk factor for adverse outcome: OR 5.7 (2.8-11.3)

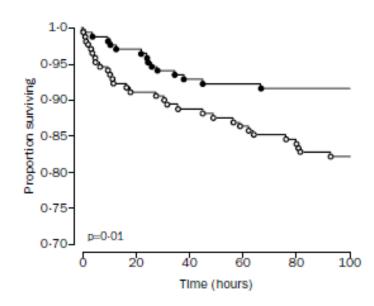
Eyelid oedema also risk factor for adverse outcome: OR 2.5 (1.4-4.8)

100% maintenance fluids iv will cause oedema in ¼ of all children

Use an isotonic fluid Hartmann solution

Fluids in meningitis

- Correct signs of dehydration
- Give 50% of maintenance IV using an isotonic fluid (Hartmann solution with 5% glucoise ideal)
- Monitor each day for signs of over-hydration or oedema
- If oedema develops reduce IV fluid rate or start frusemide
- (remember oedema may be due to fluid overload, hypoalbuminaemia, immobility, anaemia).
- Commence NG feeds as soon as it is possible (or if the child is awake allow breast feeding).


Anticonvulsants in meningitis

- Safer anticonvulsant drugs than diazepam, phenobarbitone, paraldehyde and phenytoin, especially if monitoring limited and no ICU support
- Levetiracetam
- Sodium valproate

ARTICLES

Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study

Jane Crawley, Catherine Waruiru, Sadik Mithwani, Isiah Mwangi, William Watkins, David Ouma, Peter Winstanley, Timothy Peto, Kevin Marsh

	Placebo (n=170)	Phenobarbital (n=170)	Unadjusted analyses		Adjusted analyses	
			Odds ratio (95% CI)	р	Odds ratio (95% CI)	р
Seizures						
Three or more of any duration	46 (27%)	18 (11%)	0.32 (0.18-0.58)	<0.001	0.34 (0.19-0.62)*	<0.001
Any lasting 5 min or longer	43 (25%)	20 (12%)	0.39 (0.22-0.70)	0.002	0.42 (0.24-0.76)*	0.004
Any episode of status epilepticus†	23 (14%)	9 (5%)	0.36 (0.16-0.78)	0.01	0.38 (0.17-0.85)*	0.02
Death	14 (8%)	30 (18%)	2-39 (1-28-4-64)	0.01	2.49 (1.19–5.23)‡	0.02
Neurological sequelae						
At discharge	33/156 (21%)	18/140 (13%)	0.55 (0.30-1.02)	0.06	0.56 (0.30-1.05)*	0.07
3 months after discharge	15/144 (10%)	9/131 (7%)	0.63 (0.27-1.47)	0.39	0.69 (0.29-1.65)*	0.40

^{*}Adjusted for seizures before admission.

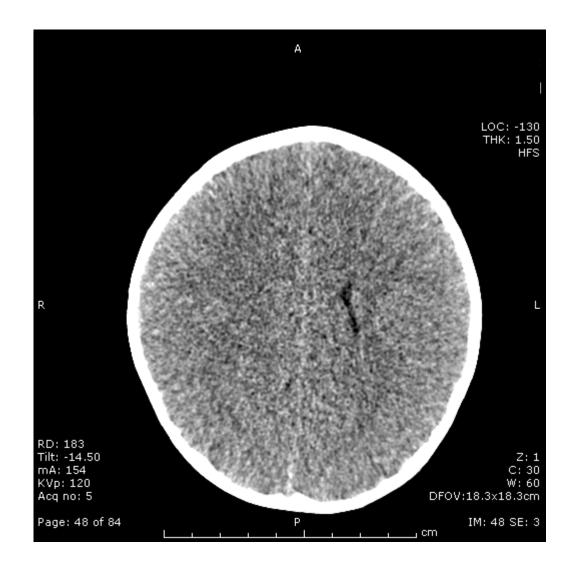
Table 2: Clinical outcome

Greatest risk of death when diazepam combined with phenobarbitone

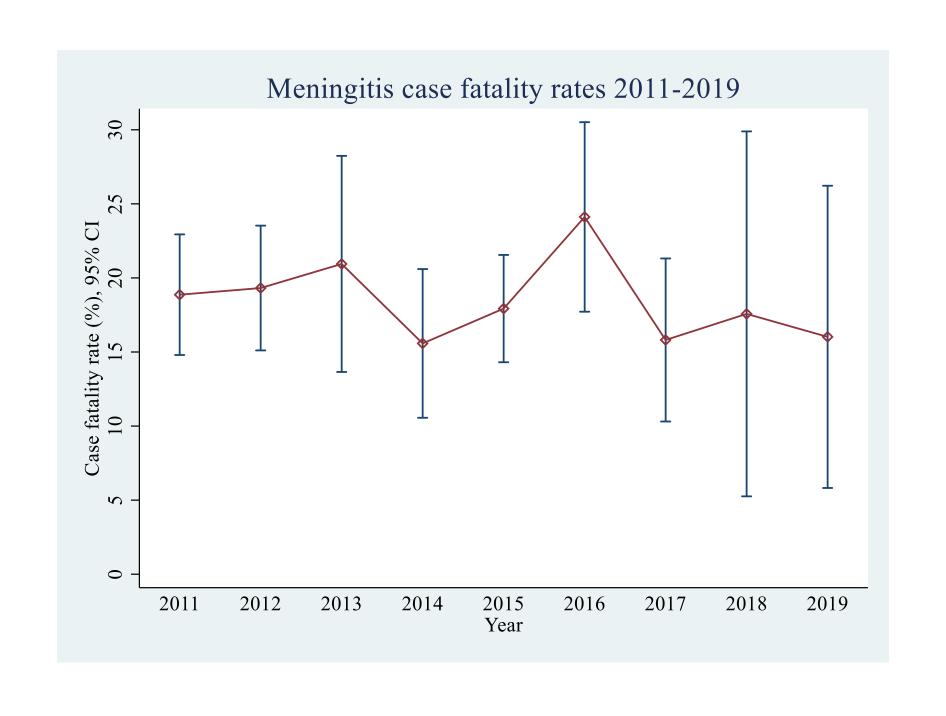
[†]Lasting >30 min or more than six within 2 h.

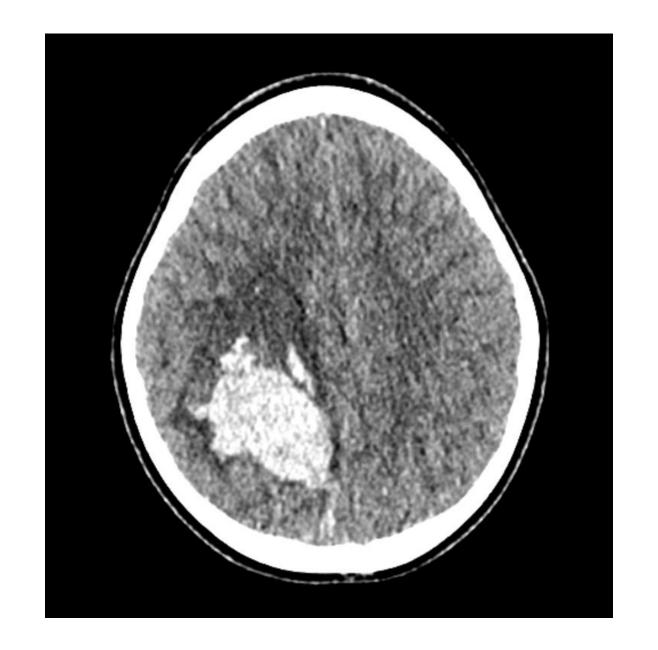
[‡]Adjusted for factors associated with increased mortality (Blantyre score, respiratory distress, base excess, glucose, urea, creatinine).

Effect of phenobarbital on seizure frequency and mortality in childhood cerebral malaria: a randomised, controlled intervention study


Jane Crawley, Catherine Waruiru, Sadik Mithwani, Isiah Mwangi, William Watkins, David Ouma, Peter Winstanley, Timothy Peto, Kevin Marsh


Diazepam doses	Placebo	Phenobarbital	Odds ratio (95% CI)	p
<3 doses	13/150 (9%)	25/162 (15%)	1·9 (0·9–3·9)	0.07
≥3 doses	1/20 (5%)	5/8 (62%)	31·7 (1·2–814)	0.001


Table 3: Mortality in phenobarbital and placebo groups, according to number of doses of diazepam


Non-febrile encephalopathy

- Trauma
- Haemorrhage
- Toxins / drugs
- Metabolic Ammonia
- Hypertensive
- Epilepsy syndrome
- Acute on chronic encephalopathy

