MMed and DCH Lectures

Weekly by Zoom

Prof Trevor Duke

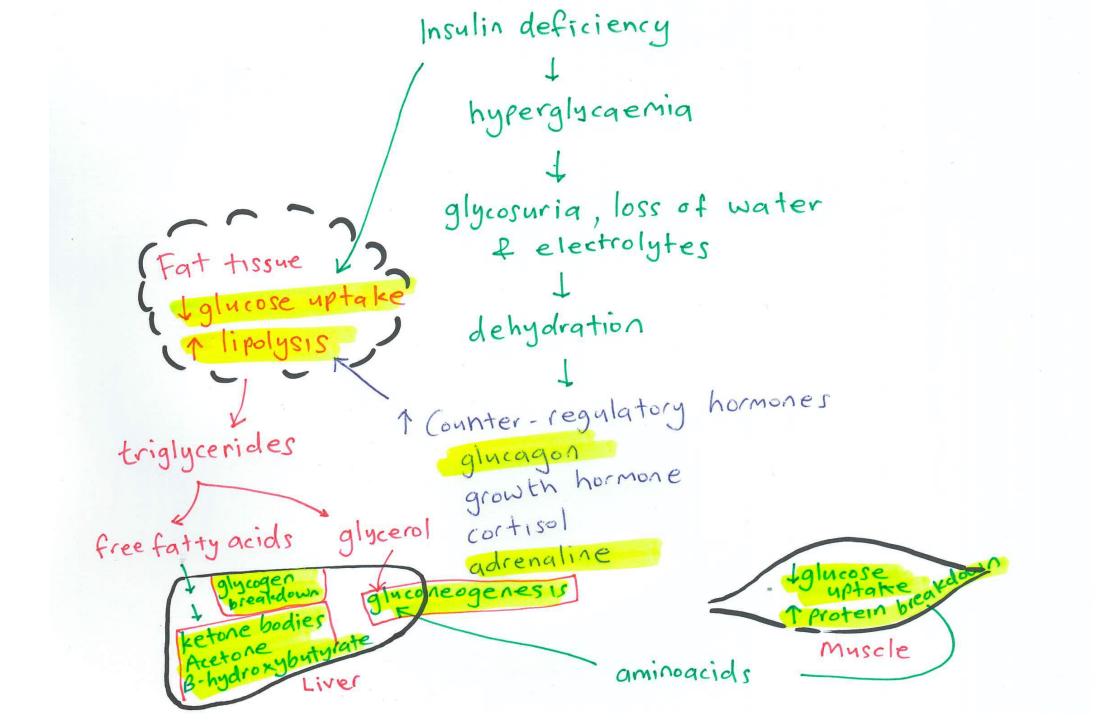
MMed and DCH Lectures

Endocrine problems in children

September 7th, 2020

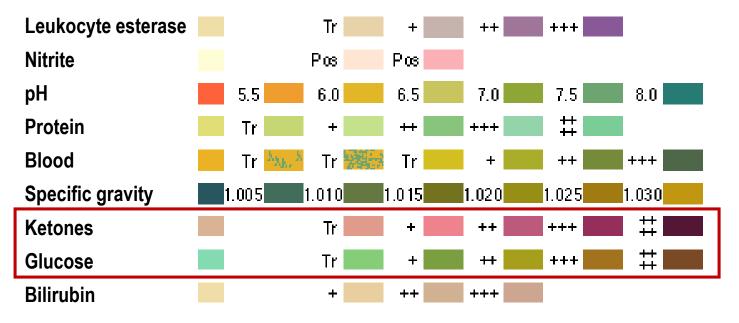
Prof Trevor Duke

7 year old girl, unwell 3 weeks, weight loss, lethargy, respiratory distress


Blood gas		Metabolic acidosis		
pH	6.9		Poorly compensated	
pCO ₂ pO ₂	11.1 101	Anion gap?		
HCO ₃	2		(Na +	K) - (CI + HCO3) = 39.6
BE	-22		Norma	al anion gap 3-10 mmol/L
Electrolytes			What are	the unmeasured anions?
Na+ K+	128 5.6	(135-145)	Lactate	3.3 mmol/L
	5.6 92	(3.5-5) (95-110	Ketonuria	++++
Urea	10.6	(2.5 to 7)	Glucose	++++ (35 mmol/L in lab)
Creat	120	(70-100)		

Diabetes

- Type I diabetes increasing around the world
- Cases reported in PNG since 2000.
- Type II diabetes increasing in children and adolescents (NZ / Polynesia)
- Clinical features
 - Weight loss
 - Thirst
 - Polyuria
 - Vomiting (ketosis)
 - Confusion, coma


Insulin functions

- Hormone for energy storage and anabolism (growth)
- Under the influence of insulin, glucose
 - Enters cells
 - Stored as glycogen in the liver
 - Stored as triglyceride in fats
- Under insulin deficiency, and influence of counter-regulatory hormones
 - Failure of glucose to enter cells
 - Glycogen breakdown
 - Triglyceride breakdown
 - Hepatic gluconeogenesis (from amino acids + glycerol)

Urine analysis

Pathogenesis of type I diabetes

- Autoimmune destruction β-cells in Islets of Langerhans, which produce insulin
- T-lymphocytes infiltration of islet cells *months or years before*
- Genetic susceptibility, triggered by many different environmental agents
 - Genetic markers multiple loci
 - Autoimmune markers islet cell autoantibodies (85%), anti-insulin antibodies
- Role of virus infections similarity to antibodies to coxackie B virus (IgM +ve in 39% of new diagnosis IDDM) and enterovirus

Pathophysiology of diabetic ketoacidosis

- Insulin deficiency \rightarrow hyperglcaemia
- Fat and protein catabolism \rightarrow ketone bodies (energy) \rightarrow acidosis
- Dehydration (vomiting, osmotic diuresis from glucose and ketones) → acidosis
- Acidosis (ketosis, dehydration)
- Potassium (commencing insulin drives potassium into cells, so K+ will be low,

DKA treatment

- Replace fluid deficit
 - Correct shock if present (10-20ml/kg)
 - Correct dehydration over 48 hours
 - Use isotonic fluid
 - Pitfalls in estimation of dehydration tachypnea, acidosis
- Replace potassium deficit (40-60mmol/L in rehydration fluid)
- Commence insulin infusion
 - 0.05-0.1 IU per kg per hour continuous IV
 - OR 4th hourly 0.8–1 IU per kg per day divided by 6 subcutaneously

20 kg, dehydrated 7 410 9 2 DKA insulin dose fluid 1 10 × 20 = 20 10/day ~ 10% dehijdrated Maintenance = 20/6 every 4 hours $10 \times 100 = 1000 \text{ MI}$ ~ 3 IV 4th hourly 10 × 50 = 500ml = 1500 MI defecit 10% × 20 L Type of fluid ~ 2000 ml replace deficit over 48h Sotonic - Hartman's solution + 40 mmol KCI per Litre. > 2000/48 = 42ml/HR (IOMI ampoule of KCI 1g=13.4 MMOI + Maintenance 1500/24 = 63m1/HR = 105ml/HR for 48h

Monitoring in acute diabetic ketoacidosis

- Clinical signs of rehydration
- 4-6 h blood sugar
 - Fall in blood glucose if <12mmol/L, add glucose to hydration fluid
- Resolution of ketosis
- [Na+] should increase

Treat complications

- Why did the child present *now*? Infection?
 - Staphylococcal infection
 - Urinary tract infection
 - Fungal infection

Establishing children with type I diabetes on treatment

- 0.8-1 IU per kg per day
- 2 subcutaneous injections
- 2/3 of total daily dose in morning, 1/3 at night
- 2/3 of each dose as intermediate-acting insulin, 1/3 as short-acting insulin

Ongoing management

- Diet
 - Complex carbohydrates
 - Avoid processed sugar
 - "Glycemic index"
- Exercise
- Supply of insulin
- Refrigeration at home
- Glucometer regular BSL testing
- Urine checking for ketones, glucose
- Log-book
- HbA1C measure of glycaemic control over the lifespan of red blood cells (120 days): normal 4-6%

V

Risks

- Hypoglycaemia
 - Relative insulin overdose, especially if lack of adequate food supply, and especially overnight
- Palpitations, tachycardia, dizziness, pallor, weakness, seizures
- All children should carry source of glucose (glucose containting sweets)
- Reduce nocte insulin and assess diet if overnight hypoglycaemia

Longer term issues – from adolescents onwards

- Nephropathy proteinuria
- Retinopathy new vessel formation
- Neuropathy
- Cardiovascular disease
- Peripheral vascular disease
- Development issues (hypoglycaemia, recurrent DKA)
- Mental health issues

Skin

Acanthosis nigricans (type II) Fungal infection Staph sepsis Lipoatrophy

Growth

• Genetic

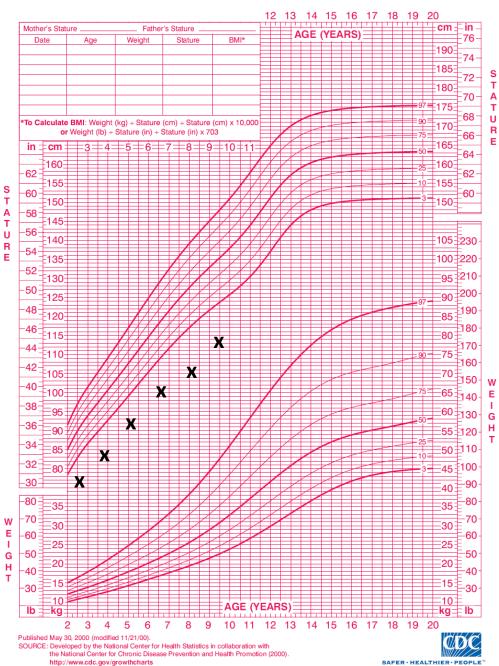
- Short parents have short children
- Genetic syndrome achondroplasia, Turner syndrome
- Nutritional
 - Stunting chronic under-nutrition
 - Intrauterine under-nutrition SGA
 - Chronic disease
- Hormonal (endocrine) factors
 - Growth hormone
 - Steroid exposure

Large head, frontal bossing, small midface, flattened nasal bridge Thoracic-lumbar kyphoscoliosis Lumbar stenosis – cord compression Foramen magnum stenosis

Achondroplasia

- Cartilage defect
- Mutation which inhibits chondrocyte proliferation in area of bone growth
- Normal intelligence
- Most children with achondroplasia will be healthy
- Recurrent otitis media
- Spinal cord compression
- Hydrocephalus
- Sleep apnoea

Turner syndrome (XO)


- Most common chromosomal cause of short stature.
- Some mosaic mild and variable phenotype
- Webbed neck
- Broad chest
- Kyphoscoliosis
- Sensorineural hearing loss
- Coarctation of aorta, bicuspid aortic valve
- Horseshoe kidneys
- Amenorrhea
- Boys with similar phenotype Noonans syndrome (short stature and right heart obstruction)

RECORD #

NAME

Length-for-age GIRLS World Health Organization Birth to 2 years (percentiles) Oth 3rd X WHO Child Growth Standards

Constitutional short stature / Inherited Genetic / syndromic cause Intrauterine influences Hormonal / endocrine