Approach to the diagnosis of Tuberculosis meningitis in children admitted to Port Moresby General Hospital

Joe Ande MMED 2 Child Health 07th October 2020

Introduction

- Globally, TB causes more deaths (infectious diseases)
- Top 10 cause of death worldwide
- In 2017, approx. 1.6 million TB deaths
- CNS TB is most severe form of TB
- Approx. 5 to 10 % of all EPTB cases

(WHO, Global TB Report, 2018)

- TB Meningitis most lethal form of CNS TB
- Diagnosis of TBM in low resource setting is very challenging
- In PNG, childhood TB is a huge burden
- Contributes substantially to
 - child mortality
 - malnutrition and
 - impaired neurological and
 - cognitive development
- Early diagnosis and treatment is essential in improving outcome,

Aims/Objectives

- 1. Assess the current practice of diagnosing TBM in children admitted to PMGH
- Determine how these current practices of diagnosing TBM can be improved (clinical, pathological and radiological investigations)

Research question

• Does the current practice of diagnosing TBM reliable and based on the best available evidence?

Method

Study design and study population

- Study design: Prospective observational study
- Study Site: Port Moresby General Hospital, Paediatric ward
- Study duration: April 2019 to May 2020
- Study population:
 - Paediatric patients who have clinical signs and symptoms of TB and
 - suspected of CNS TB or TBM
- Sample size. 50 participants

Recruitment criteria

- Inclusion criteria: children > 1 month old to 12 years
- Exclusion criteria:

 neonates and children > 12 years old ,
children with prior underlying cerebral lesions such as stroke or cerebral palsy, or diagnosed with Epilepsy

Variables measured

- Symptoms and signs at onset of illness
- Csf results
- Gene x-pert findings
- CT scan findings
- CXR findings
- Treatment and responses at one month
- Patient outcome and final outcome

Data collection, entry and analysis; and Ethics

- Data collection and entry- prepared questionnaire/ excel spread sheet
- Data analysis was performed using SPSS
 - Median and IQR for numerical variables
 - Frequency and percentages for categorical variable
- Ethical approval was obtained from the SMHS Ethics Committee

Results

Table 1. Demography Characteristics

Total participants	50
Male	26 (52%)
Age in months	Median=45, IQR= (20.75-85.25)
Weight in Kg	Median=15, IQR= (8.75-20.50)
Height in cm	
Weight for length (malnutrition)	25 (50%)

Table 2. Clinical history at onset of illness of TBM

	- ()
Symptoms	Frequency (%)
Severe headache	23 (46%)
Lethargy/weakness	26 (52%)
Fever	43 (86%)
Confusion	4 (8%)
Unconsciousness	6 (12%)
Seizures	35 (70%)
Coughing	29 (58%)
Falling down	5 (10%)
Others	9 (18%)
Contact with Tb	25 (50%)
Previous TB treatment	5/48 (10%)
Completed previous Rx	2/4 (50%)

Table 3. Signs at onset of illness TBM

Signs	Frequency (%)
Temperature (> 37.2)	26 (52%)
Conscious and alert	25 (50%)
Seizure	36 (72%)
GCS (9-12)	22 (44%)
Neck stiffness	37 (74%)
Focal motor deficit	11 (22%)
Oculomotor palsy	3 (6%)
Facial Palsy	5 (10.5)

Table 3. CSf results and TBM

	Frequency (%)
Lumbar puncture performed	37 (74%)
Lymphocytes (> 80%)	32 (64%)
Neutrophil (>5/ul)	28 (%)
Red cells (>1)	2 (4%)
Glucose – normal (40-80mg/dl)	36/37 (97%)
- abnormally low (<40%)	1/37 (3%)
Protein - Abnormally high (> 45mg/dl)	21 (42%)

Table 4. GeneX-pert and TBM

	Frequency (%)
MTB on Csf	13/39 (33%)
MTB on Gastric Aspirate	9/49 (18%)
MTB on Fine Needle Aspiration	2/49 (4%)
1 st line DRTB detected	3/49 (6%)
Gene X-pert on Csf change Management	17/46 (37%)

Table 5. CT scan, CXR and TBM

	Frequency (%)
CT performed	39 (78%)
Contrast	39/39 (100%)
Normal CT	3/39 (8%)
Ring enhancing lesion	13/39 (33%)
Meningeal enhancement	35/39 (90%
Enlarged ventricle	29/39 (74%)
cerebral edema	16/39 (41%)
Infarct/stroke	10/39(26%)
CT change Management	36/40 (90%)
CXR performed	46 (92%)
CXR changes	34 (68%)
CXR suggestive of TB	26 (52%)

Table 6. Treatment and responses at one month

	Frequency (%)
First line DS TBM	46 (92%)
2 nd line MDR TB	4 (8%)
Response to treatment at one month	
Much improved neurologically	39 (78%)
No significant improvement neurologically	9 (18%)
Deteriorated	3 (6%)
Complication at one month after commencing treatment	
Seizure	3/49 (6%)
hydrocephalus	30/49 (61%)
Spasticity	16/49 (33%)
Limb contracture	2/49 (4%)
Progressive malnutrition	5/49(10%)
GCS (9-12)	22/49 (45%)

Table 7. Patients outcome and final outcome

	Frequency (%)
Normal conscious state	31/49 (63%)
No gain of consciousness	17/49 (35%)
Cerebral palsy	29/49 (59%)
Other severe neurological sequelae	24/49 (49
Survived and discharge	49 (100%)

Discussion

- TB meningitis is real burden in PNG
- Has increase mortality and morbidity
- Very challenging diagnosing TB meningitis, though algorithm being developed but never been tested in PNG
- Our study showed at least 50% or more of the population studied has fever, cough, seizure, confusion, household contact with TB and lethargy/ weakness.

- The study also showed
 - CSF- more lymphocytes, abnormally high protein and normal glucose
 - CT- majority has meningeal enhancement and enlarge ventricle
 - CXR- changes which suggestive of TB in more than 50% of population studied
 - Gene x-pert detected MTB in CSF more compared to other sample collected for testing

- The investigative findings somewhat consistent with what we already know.
- And other studies on diagnosing TBM listed below support our findings
- Most of the patients were on first line treatment and recovering after 1 month of treatment, though they experienced complications- hydrocephalus and spasticity
- Most patients are still in the ward- around 3/5 of these patients are fully conscious and has cerebral palsy.
- (Miltode, G, etal, Plos One, 2015)(Bang, D, BMC infectious Disease, 2016)(WHO, Global TB report, 2018)

- We do acknowledge that there are limitation of the study. The limitations were:
 - Missing data
 - Small sample size
 - Data maybe inaccurate entered

Conclusion

- We are doing well in diagnosing and managing TB meningitis patients in our setting
- The current practice is reliable and has been well documented in some literatures
- Based on these results, we can design a standardized algorithm for PNG in diagnosing TB meningitis
- This will further improve detection, management and prevent comorbidities and deaths relating to TB meningitis

Acknowledgement

I would like to acknowledge the following people

- Prof Trevor Duke-RCH, Melbourne University
- Prof John Vince-Deputy Dean, SMHS
- Dr. Francis Pulsan- Pediatrician and lecturer, SMHS
- Pediatricians in PMGH and colleague registrars
- Dr. M. Clement and radiology team–Radiologist, PMGH
- Ward 1BA and 1CD staff
- Patients and guardians-PMGH